skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oliveira, Celso"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The discovery of bioactive natural products is often challenged by the complexity of isolating and characterizing active compounds within diverse mixtures. Previously, we introduced a 1H NMR-based weighted gene correlation network analysis (WGCNA) approach to identify spectral features linked to growth inhibitory activity of Piper (Piperaceae) leaf extracts against model plant, fungal, and bacterial organisms. This method enabled us to prioritize specific spectral features linked to bioactivity, offering a targeted approach to natural product discovery. In this study, we validate the predictive capacity of the WGCNA by isolating the compounds responsible for the bioactivity-associated resonances and confirming their antifungal efficacy. Using growth inhibition assays, we verified that the isolated compounds, including three novel antifungal agents, exhibited significant bioactivity. Notably, one of these compounds contains a rare imidazolium heterocyclic motif, marking a new structural class in Piper. These findings substantiate the 1H NMR-based WGCNA as a reliable tool for identifying structural types associated with biological activity, streamlining the process of discovering bioactive natural products in complex extracts. 
    more » « less
  2. Summary Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack.We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in maturePinus edulisunder experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostomasp.) ofIps confusus, the main bark beetle colonizing this tree, to induce a defensive response.Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted forc.23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site.Our results show thatde novoterpene synthesis represents only a fraction of the total measured phloem terpenes inP. edulisfollowing fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance ofde novoterpene synthesis in a tree's induced defense response. 
    more » « less
  3. A novel meroterpenoid cabagranin D was isolated with related neolignans cabagranins A–C from the leaves ofPiper cabagranum(Costa Rica). Cabagranins A–C represent the first examples of 3,3′-neolignans isolated from the plant genusPiper, and the meroterpenoid cabagranin D displays an unprecedented Diels–Alder conjugate of an unsubstituted phenylpropenone and α-phellandrene. Details of the full structural elucidation of these compounds and a discussion of their potential biosynthetic relationships are presented. 
    more » « less